Multi-user Privacy

Privacy regards the information we disclose about ourselves but also whatever others can disclose about us.
Multi-user Privacy

Privacy regards the information we disclose about ourselves but also whatever others can disclose about us.

96% of the participants to a large-scale study reported a Multi-user Privacy Conflict (MPC):

• In 75% of the cases approach “all-or-nothing”.
• In 50% of the cases co-owners do not even complain.
• 70% of the conflicts was solved - general collaborative attitude.
• Sometimes there are no acceptable solutions.

Such et al., 2017
Wisnievski et al., 2012
Privacy regards the information we disclose about ourselves but also whatever others can disclose about us.

96% of the participants to a large-scale study reported a Multi-user Privacy Conflict (MPC):

• In 75% of the cases approach “all-or-nothing”.
• In 50% of the cases co-owners do not even complain.
• 70% of the conflicts was solved - general collaborative attitude.
• Sometimes there are no acceptable solutions.

Research to support and incentivise the search of a compromise.
Multi-user Privacy

Privacy regards the information we disclose about ourselves but also whatever others can disclose about us.

96% of the participants to a large-scale study reported a Multi-user Privacy Conflict (MPC):

- In 75% of the cases approach “all-or-nothing”.
- In 50% of the cases co-owners do not even complain.
- 70% of the conflicts was solved - general collaborative attitude.
- Sometimes there are no acceptable solutions.

Research to support and incentivise the search of a compromise.
Multi-user Privacy

Privacy regards the information we disclose about ourselves but also whatever others can disclose about us.

96% of the participants to a large-scale study reported a Multi-user Privacy Conflict (MPC):

- In 75% of the cases approach “all-or-nothing”.
- In 50% of the cases co-owners do not even complain.
- 70% of the conflicts was solved - general collaborative attitude.
- Sometimes there are no acceptable solutions.

Research to support and incentivise the search of a compromise.

Such et al., 2017
Wisnievski et al., 2012
Related Work

Explainability is crucial for autonomous systems to foster the users’ trust

Numerous efforts to solve MPCs in the literature, but lack of explainability

- Fogues et al., (2017): A recommendation system identifies the solution by considering a set of arguments
- Kökciyan et al., (2017): Ontologies, semantic rules and persuasion dialogues
The agents Ag act on behalf of their users, according to their preferences, in order to identify a compromise acceptable for everyone.
The preferred sharing policy is elicited for each user $k \in Ag$ and compared with each candidate solution in SP. Each $sp \in SP$ can generate for each user a gain or a loss in utility:

$$utility: u_{k,sp}$$
According to the Schwartz Theory of Basic Values, we define the user’s morality according to 4 value-directions. We interpret the value-direction in the MPC context and we evaluate whether the values of the user $k \in Ag$ are promoted by selecting each candidate solution:

\[
\text{value promotion: } \nu_{k,sp}
\]
The Agent Architecture

Each agent $k \in Ag$ computes for each candidate solution $sp \in SP$ the individual score that represents the user’s appreciation of the solution in terms of utility and value promotion. The individual scores are aggregated into the collective score for each $sp \in SP$:

$$s_{k,sp} = u_{k,sp} \cdot v_{k,sp}$$

$$s_{sp} = \sum_{k \in Ag} s_{k,sp}$$
 Explainable Agents

Cognitive Process

\[
\{ \text{offer} \quad \text{accept/reject} \quad \text{accept/reject} \} = \text{joint action}
\]

Value-based arguments and critical questions supporting/challenging each individual action

Practical reasoning techniques and computational argumentation

\[\text{AS-U: Given the current conflict, I should offer the sharing policy } sp, \text{ that will be accepted by the co-owners and therefore will solve the conflict, that will provide the score } s_{sp} \text{ and that will promote my values } V.\]
Explainable Agents

Cognitive Process

1. Problem Formulation

Atkinson and Bench-Capon, 2007
1. Problem Formulation

2. Epistemic assumptions:
 - All the agents have the same knowledge of the system (only the order over values are private).
 - The co-owners are believed to accept when the offer matches the individual and/or overall maximum score.
1. Problem Formulation

2. Epistemic assumptions:
 - All the agents have the same knowledge of the system (only the order over values are private)
 - The co-owners are believed to accept when the offer matches the individual and/or overall maximum score

3. Choice of Action

 AS-U and AS-C, and their critical questions, allow the creation of an argumentation framework, that provides the justification for action.
Explainable Agents
Cognitive Process

1. Problem Formulation

2. Epistemic assumptions:
 • All the agents have the same knowledge of the system (only the order over values are private).
 • The co-owners are believed to accept when the offer matches the individual and/or overall maximum score.

3. Choice of Action
AS-U and AS-C, and their critical questions, allow the creation of an argumentation framework, that provides the justification for action.
Explainable Agents
Social Process

Tailored explanations
Contrastive explanation
Explaining conflicts

Miller, 2018
Given the disagreement with Bob and Charlie about how to share your picture, to offer s_p' is your most convenient action, because it would allow you to compromise with your friends (remember that openness-to-change is your most preferred value).

Why shouldn’t I offer s_p_A instead?

Because you could get a better score than the one guaranteed by s_p_A (obj13.1), openness-to-change would be demoted (obj13.5), and because Bob and Charlie would most likely reject your offer (obj13.7 and obj13.8).
Given the disagreement with Bob and Charlie about how to share your picture, to offer sp' is your most convenient action, because it would allow you to compromise with your friends (remember that openness-to-change is your most preferred value).

Why shouldn’t I offer sp_A instead?

Because you could get a better score than the one guaranteed by sp_A (obj13.1), openness-to-change would be demoted (obj13.5), and because Bob and Charlie would most likely reject your offer (obj13.7 and obj13.8).
Given the disagreement with Bob and Charlie about how to share your picture, to offer s_p' is your most convenient action, because it would allow you to compromise with your friends (remember that openness-to-change is your most preferred value).

Why shouldn’t I offer $s_p A$ instead?

Because you could get a better score than the one guaranteed by $s_p A (obj13.1)$, openness-to-change would be demoted (obj13.5), and because Bob and Charlie would most likely reject your offer (obj13.7 and obj13.8).
Given the disagreement with Bob and Charlie about how to share your picture, to offer sp' is your most convenient action, because it would allow you to compromise with your friends (remember that openness-to-change is your most preferred value).

Why shouldn’t I offer sp_A instead?

Because you could get a better score than the one guaranteed by sp_A (obj13.1), openness-to-change would be demoted (obj13.5), and because Bob and Charlie would most likely reject your offer (obj13.7 and obj13.8).
Discussion

- Explainability crucial for autonomous systems
- Explainability given by cognitive and social processes
- EXPRI’s cognitive process guaranteed by performing practical reasoning
- EXPRI’s social process to be further studied
References

Atkinson and Bench-Capon, Practical reasoning as presumptive argumentation using action based alternating transition systems. AIJ 171, 10-15 (2007)

Fogues et al., Sharing policies in multiuser privacy scenarios: Incorporating context, preferences, and arguments in decision making. ACM TOCHI (2017)

Kökcıyan et al., An argumentation approach for resolving privacy disputes in online social networks. ACM TOIT (2017)

Miller, Explanation in artificial intelligence: Insights from the social sciences, AIJ (2018)

Mosca et al., Towards a Value-driven Explainable Agent for Collective Privacy. AAMAS Extended Abstract (2020)

Schwartz, An overview of the Schwartz theory of basic values. Online readings in Psychology and Culture 2,1 (2012)

F. Mosca, S. Sarkadi, J.M. Such, P. McBurney, Agent EXPRI: Licence to Explain @ EXTRAAMAS 2020
References

Fogues et al., *Sharing policies in multiuser privacy scenarios: Incorporating context, preferences, and arguments in decision making*. ACM TOCHI (2017)

Thank you for your attention! Please contact me for any questions: francesca.mosca@kcl.ac.uk